University of Minnesota

Personal vs. Social

Mohamed F. Mokbel

Department of Computer Science and Engineering
University of Minnesota
www.cs.umn.edu/~mokbel
mokbel@cs.umn.edu

September 2010 PersDB Panel




Motivation: Find a Restaurant for Dinner
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« Does not meet my dietary
(3) Restaurant 3:
« Way too expensive

(@) Restaurant 4 Closest is NOT

e Closed for remodeling

(5) Restaurant 5: a | WayS B etter

30 minute drive-time, bad traffic
accident along the route
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What Could be a Better Answer ? lﬁl

A personalized answer that is aware of
user preferences and
surrounding contextual information,
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Personalization

Preference Queries Recommender Systems

d Context-Awareness
d Privacy
C d Efficiency y
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Preference Queries

=]

SELECT *
FROM Restaurants R

What is the
Query Answer?

Query Building

What preference
method evaluates the

PREFERRING
clause?

SELECT *

FROM Restaurants R

PREFERRING MIN R.Price,
MAX R.Rating,
MIN R.WartTime,
MIN TravelTime(R.Location)
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Preference Evaluation Methods
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B Quick Exercise
(1) Go to scholar.google.com
(2) Search for papers on preference evaluation methods
(3) How many results do you get back?

The list goes on and on and on...

— Top-k [VLDB 99] —

Skyline [ICDE 01]
== | K-Dominance [SIGMOD 06] - T
e K-Frequency [EDBT 06] =

AL Top-k domination [VLDB 07]
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Recommender Systems
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Context-Awareness
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B User Context / Preference
[J Stored in the Client side: User location, health status, budget, etc...

B Database Context
[J Stored in the database side: restaurant waiting time, price, today’s specialty

B Environmental Context
[J Stored in a third-party: Traffic, weather, road network, transportation

Preference Queries I Recommenderr Systems
B Context requirements are B Context requirements are
added in the PREFERRING considered as an after

thought problem

B The model is built first, then
the contextual conditions are
I tested

clause of the SQL Query
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Privacy
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Preference Queries Recommender Systems
B You always need to give up B Recommendation information

something (e.g., location, preference, can be obtained without
context) to get the service. revealing much information
100% where a fake identity can be
used
B If actual identity is used, e.g.,
Service social networking, privacy

would be a major threat
B Adding context information

0 would reveal privacy
100% Privacy 0%
( Thechallenge here is not only how to protect user )
privacy, but also, how to obtain the services after
g protecting the privacy )
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Efficiency (Preference Queries) ﬂl

B With the exception of ranking queries, most of the ~— f~— >

existing work in preference queries focus on either: Preference
Evaluation

1. Finding new meanings of the best answer Top-k

B \We really have enough of these...!!! Skyline

K-Dom

2. Finding smart algorithms to be evaluated on top i
of a DBMS to find the best answer Jopk Dom

B There is a performance limit here that we
cannot go beyondl

(It is time to consider built-in approaches for all preference)
gueries; dealing with all preference operations as first
g class operators inside the database engine

J
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Efficiency (Recommender Systems) ﬂ

B The main focus is mainly on the inteligence and when taling thinking machines might became commonplace.
quality of the answer as the WPWRR i e
expensive process of model {. " ‘Like"button
generation is done offline v ffte ottiaron, :

B New environments (e.g., social 8 2y 153t 1202m - Conment e - Shre

- - Y 11 people like this,
networks and online news) require P oo e

fast recommendation process as
user opinions expressed instantly

Fraternity of the Wired Works in the Wee Hours
Pl b 5 01 “Recommend” button
4 )

NEW YORK — After college, most people do their best to ewo:'l\ FACEBOOK It iS tl m e to fo r fi n d I n g

having to pull any more all-nighters. But for some, even after TWITTER

RECOMMEND efﬂ C | ent m et h 0] d S fO I
-- nlar§&This Irnag That is what led Amber Lambke and B ;'flrt”‘ ToE O n I I n e m O d eI g e n e r ati O n

3 8 Allan Grinshtein to start a group called -
F e PRINT J
U < the New York Nightowls, a sort of \

| study hall for entrepreneurs,

graduation, the wee hours of the morning are the most productive.

(@ REFRINTS
freelancers and software developers

o A
who gather at 10 every Tuesday night a4 sare
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University of Minnesota

QOur Work in Minnesota

FlexPref CareDB RecStore
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FlexPref

oo

Layered Approach Built-in Approach
(The Bad) (The Ugly)

— TN
N B

Preference
Evaluation

Top-k
Skyline
K-Dom
K-Freq

Top-k Dom
S—_ —

Preference Query
Processing and
Optimization

Skyline implementation: Skyline implementation:
~200 lines of code ~2000 lines of code for

(selection by nature) selection only
Bad Performance Good Performance
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Extensible Approach

Query Processing
and Optimization

FlexPref

Top-k

Skyline
K-Dom
K-Freq

Skyline implementation:
~300 lines of code for
selection and join
Good Performance
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CareDB

User <:::ZZ1Z:::::|:::::::::l::::::, |
Context/Preference
/ ¥ v v v CareDm

Preference/Context-
Use_r Aware Query
Query Processing and
Optimization

Preference-Aware Joinl Expensive attributes . Uncertain Data

Iy: :e: :I p:.'}:‘. :i

Reviews

Microsoft®

Select g MapPoint®

Driving time

araa> | _,
R '1‘ T S Weather Data
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RecStore

SELECT M.i1tm as Recltem, SUM(M.sim*U.rating)/SUM(M.sim) as Prediction

FROM Model M, usrXMovies U
WHERE M.rel _i1tm = U.i1tmld AND M.itm NOT IN (select 1tmld FROM U)

GROUP BY M.itm ORDER BY Prediction DESC;

o
> 0
o 2 Recommender
&3 Queries
o
Access Methods
4 RecStore)
% Model Store Intermediate Store
@ O = | L EEE -
S f Model | |{ Intermediate : o
) | G p—
N € 1 Filter : € I Filter % Ra‘“ng
|
R N . - 'j Data
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