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Motivation: Find a Restaurant for Dinner

 K closest restaurants…!!

 Consider five closest restaurants for 
dinner
① Restaurant 1: 

• Hour and a half wait
② Restaurant 2: 

• Does not meet my dietary
③ Restaurant 3: 

• Way too expensive
④ Restaurant 4: 

• Closed for remodeling
⑤ Restaurant 5: 

• 30 minute drive-time, bad traffic 
accident along the route

Closest is NOT 
always Better
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What Could be a Better Answer ?

A personalized answer that is aware of 
user preferences and 

surrounding contextual information, 
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Personalization
Preference Queries Recommender Systems

 Context-Awareness
 Privacy
 Efficiency

vs.
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Preference Queries
SELECT * 
FROM Restaurants R

Query Building

SELECT *
FROM Restaurants R
PREFERRING MIN R.Price,

MAX R.Rating,
MIN R.WaitTime,
MIN TravelTime(R.Location) 

What is the 
Query Answer?

What preference
method evaluates the

PREFERRING 
clause?
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Preference Evaluation Methods
 Quick Exercise

① Go to scholar.google.com
② Search for papers on preference evaluation methods
③ How many results do you get back?

The list goes on and on and on…
Top-k [VLDB 99]

Skyline [ICDE 01]

K-Dominance [SIGMOD 06]

K-Frequency [EDBT 06]

Top-k domination [VLDB 07]
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Recommender Systems
Movie Reviews

uid mid rating

u1 b2 5

u1 b3 4

u2 b1 3

u2 b3 3.5

Movie
Ratings

Recommender Model
Mid related_movie sim_score

b1 b3 .9

b1 b2 .8

b1 b4 .2

b1 b5 .4

…

Recommender Model
Generation

Users

Recommendation
Production

Offline process

Online process
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Context-Awareness
 User Context / Preference

 Stored in the Client side: User location, health status, budget, etc…

 Database Context
 Stored in the database side: restaurant waiting time, price, today’s specialty

 Environmental Context
 Stored in a third-party: Traffic, weather, road network, transportation

Preference Queries
 Context requirements are 

added in the PREFERRING 
clause of the SQL Query

Recommenderr Systems
 Context requirements are 

considered as an after 
thought problem

 The model is built first, then 
the contextual conditions are 
tested



September 2010 9PersDB PanelPersDB Panel

Privacy
Preference Queries

 You always need to give up 
something (e.g., location, preference, 
context) to get the service. 

Recommender Systems
 Recommendation information 

can be obtained without 
revealing much information 
where a fake identity can be 
used

 If actual identity is used, e.g., 
social networking, privacy 
would be a major threat

 Adding context information 
would reveal privacy

Service

100%

Privacy
0%

0%100%

The challenge here is not only how to protect user 
privacy, but also, how to obtain the services after 

protecting the privacy
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Efficiency (Preference Queries)

 With the exception of ranking queries, most of the 
existing work in preference queries focus on  either:

1. Finding  new meanings of the best answer
 We really have enough of these…!!!

2. Finding smart algorithms to be evaluated on top 
of a DBMS to find the best answer
 There is a performance limit here that we 

cannot go beyondI

Top-k
Skyline
K-Dom
K-Freq

Top-k Dom

DBMS

Preference 
Evaluation

It is time to consider built-in approaches for all preference 
queries; dealing with all preference operations as first 

class operators inside the database engine
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Efficiency (Recommender Systems)

 The main focus is mainly on the 
quality of the answer as the 
expensive process of model 
generation is done offline

“Like” button

 New environments (e.g., social 
networks and online news) require 
fast recommendation process as 
user opinions expressed instantly

“Recommend” button

It is time to for finding 
efficient methods for 

online model generation
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Our Work in Minnesota

FlexPref CareDB RecStore
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FlexPref
Layered Approach

(The Bad)

Top-k
Skyline
K-Dom
K-Freq

Top-k Dom

DBMS

Preference 
Evaluation

Skyline implementation: 
~200 lines of code 

(selection by nature)
Bad Performance

Built-in Approach
(The Ugly)

DBMS

Preference Query 
Processing and 

Optimization
Top-k

Skyline
K-Dom
K-Freq

Top-k Dom

Skyline implementation: 
~2000 lines of code for 

selection only
Good Performance

DBMS

Top-k Dom

Skyline
K-Dom
K-Freq

Top-k

Query Processing 
and Optimization

FlexPref

Extensible Approach
(The Good)

Skyline implementation: 
~300 lines of code for 

selection and join
Good Performance
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Query
Building

Preference/Context-
Aware

Query Processing and 
Optimization

Query
Answer

User
Queries

CareDB
User1 User2 Usern. . .

User 
Context/Preference

Data1 Data2 Datan
. . .

Data Context

CareDB

CareDB

Environment
Context

Expensive attributes

Driving time Reviews

Weather Data

Uncertain DataPreference-Aware Join
Select

Join

Select Select

R S
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RecStore
SELECT M.itm as RecItem, SUM(M.sim*U.rating)/SUM(M.sim) as Prediction
FROM Model M, usrXMovies U
WHERE M.rel_itm = U.itmId AND M.itm NOT IN (select itmId FROM U)
GROUP BY M.itm ORDER BY Prediction DESC;

Access Methods

Rating 
Data

Recommender
Queries

Ratings
Update

Model Store Intermediate Store

Intermediate
Filter

Model
Filter

Q
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RecStore
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Thanks
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