
A Benchmark for Context Data Management
in Mobile Context-Aware Applications∗

Nadine Fröhlich Thorsten Möller Steven Rose Heiko Schuldt
Databases and Information Systems Research Group

University of Basel, Switzerland

firstname.lastname@unibas.ch

ABSTRACT
Over the last few years, computational power, storage ca-
pacity, and sensing capabilities of mobile devices have signif-
icantly improved. As a consequence, they have undergone
a rapid development from pure telecommunication devices
to small and ubiquitous computing platforms. Most impor-
tantly, these devices are able to host context-aware appli-
cations, i.e., applications that are automatically adjusted to
the current context of their user. This, in turn, requires sens-
ing support on the device, the possibility to store context in-
formation, and to efficiently access this context information
for the automated adaptation of applications. In this pa-
per, we introduce a benchmark for context management in
mobile context-aware applications. We present in detail the
design and setup of the benchmark, based on an eHealth use
case. The benchmark evaluation considers context queries
on Android Nexus One cell phones and compares the perfor-
mance of different settings including relational and object-
oriented databases on the mobile device, and an RDF triple
store on a stationary computer. The results show significant
differences in the settings that have been evaluated and are
thus valuable indicators for database selection and system
design for mobile context-aware applications.

1. INTRODUCTION
Over the last few years, mobile devices have undergone a

rapid metamorphosis from pure telecommunication devices
to small and ubiquitous computing platforms. This is the re-
sult of a multitude of technical developments: i.) new types
of powerful and energy-efficient processors; ii.) the signifi-
cant increase in local storage capacity due to inexpensive,
low latency flash memory cards; iii.) sophisticated sensing
capabilities already embedded into off-the shelf devices (e.g.,
GPS sensors or acceleration meters). As a result of these de-
velopments, mobile devices are more and more in the focus of
novel kinds of applications that aim at improving the way

∗This work has been partly funded by the Hasler Foundation

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
PersDB ‘10, September 13, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

users access data and information. A particular emphasis
has been put in recent years on context-aware applications.
These applications aim at automatically adapting the way
information is accessed, processed, and/or presented to the
current needs of their user, based on their context (e.g.,
preferences, location, devices at hand). As users are mo-
bile, their context may rapidly change over time. Hence, in
contrast to traditional earmarked applications running on
stationary devices with users whose context is rather static,
mobile applications are characterized by the intrinsic high
frequency in which the users’ context changes. For the man-
agement of sensed context and the exploitation of context
for automated adaptation, e.g., by a rule engine, efficient
and effective context data management is needed.

Motivation: eHealth Use Case. Consider, for instance,
information access in a hospital. On a ward round, the doc-
tor’s time should mainly be spent for the interaction with
their patients, rather than for searching in the clinical in-
formation system. For example, retrieving electronic pa-
tient records should be unobtrusive and efficient. When a
physician enters a sick room, her mobile phone should au-
tomatically display the medical history of the patient(s) in
this room. Annotations to the health record added via the
device will be synchronized with the underlying clinical in-
formation system. In case she wants to share medical images
with her patient for which the mobile device’s display is too
small, the images should be automatically transferred to the
patient’s bed-mounted multimedia device.

Challenges and Contribution. For the type of dynamic
adaptations described before, the current context of a user
needs to be sensed and stored for immediate and/or later
exploitation. The amount of context data to store can vary
significantly, depending on the frequency in which the user’s
context changes and the frequency in which it is sensed. Al-
though today’s mobile devices are much more powerful com-
pared to devices as of some years ago, resources are still lim-
ited. Therefore, databases for storing and retrieving context
data need to be as efficient as possible. We have designed
a benchmark tailored to context data management for mo-
bile applications (aligned to the eHealth use case presented
above) in order to identify which data store is best suited
for this task. This benchmark has been implemented using
three different kinds of open source databases: i.) relational
databases locally on the device and on a remote stationary
server ii.) an RDF triple store on a remote server, and iii.)
an object-oriented database locally on the device and on a



remote stationary server. We could only run the triple store
remotely, with updates and queries submitted from a mobile
device, as there is, to the best of our knowledge, currently
no stable open source RDF-based implementation directly
running on mobile devices. However, this configuration is
very relevant, since context information will be subject to
reasoning. To factor out communication costs when inter-
acting with a remote server, we also ran the benchmark on
the object-database and two relational databases remotely.

For the evaluation we used the context data model de-
signed for the LoCa project [7], implemented for each of the
data stores. Furthermore, we implemented a data generator
to populate all databases with the same context data. The
benchmark queries have been tailored to the different data
models and schemas while keeping the original semantics as
defined in the benchmark set-up.

The paper is organized as follows: Section 2 reviews re-
lated work. The benchmark setup is discussed in Section 3.
The implementation of the benchmark is described in Sec-
tion 4 and Section 5 presents and discusses the evaluation
results. Section 6 concludes.

2. RELATED WORK
Existing OLTP and OLAP-style database benchmarks usu-

ally address data center-scales rather than mobile environ-
ments. The TPC-C and TPC-E Benchmarks [21] give pref-
erence to a relational data model, SQL as the query lan-
guage, and aim at enterprise-scale database systems. Like-
wise, the Berlin SPARQL Benchmark [3] focusses on RDF
triple stores, and the LUBM Benchmark [9] evaluates OWL
knowledge base systems, both bound to SPARQL as the
query language. The Pole Position [15] benchmark com-
pares relational and object-oriented database engines and
object-relational (O/R) mapping implementations, but not
in a mobile setting.

In general, benchmarks for mobile environments are rare.
There exists an open source benchmark [11] designed for
the Android platform which compares the object-oriented
database Perst [14] with SQLite. However, the evaluations
are too limited to assess the overall performance character-
istics of these systems. All queries access only one relation
without joins, aggregations, subselects, etc. Therefore, they
cannot be directly applied to the kind of schema and queries
that have to be considered for context-awareness.

Our benchmark compares the performance of different ap-
proaches for storing context data. In [20], context models
are compared w.r.t. simplicity and flexibility, while we focus
in our work explicitly on performance aspects. [2] identifies
requirements on context stores, especially in terms of histor-
ical context data, which are considered in our benchmark.

3. BENCHMARK DESIGN
In what follows, we introduce the data model designed for

the benchmark and the query mix to be considered (more
details on the benchmark specification and evaluation can
be found in [8]).

Benchmark Data Model. For the benchmark, we exploit
the LoCa data model for context data which is defined in
accordance with the most commonly used definition for con-
text (Dey et al. [6]). The LoCa context model is introduced
in detail in [7] and summarized in Figure 1 and Table 1.

Figure 1: LoCa Context Model

Subject: specifies for whom the context is determined,
e.g., the owner of a mobile phone
ContextObject: The context of the subject, e.g., the
location of a physician. Context objects have a value,
e.g., current GPS coordinates, which have a unit, e.g.,
degree (for longitude and latitude).
DataGenerator: the sensor that senses context data.
Besides hardware (e.g., GPS) and software sensors (e.g.,
diary) we include manual human input.
Mode: includes metadata on DataGenerators (e.g., in
which frequency a generator produces elements of a data
stream.
ContextMetaData: metadata on ContextObjects (e.g.,
timestamp of sensed data, or accuracy of context data).
LogicalCombination: ContextObjects can recursively
consist of ContextObjects.

Table 1: Description of the LoCA Context Model

Benchmark Test Load. The objective for the specification
of the benchmark test load was to be as realistic as pos-
sible (in terms of the different types of queries, their mix,
and the volumes of data), without giving preference to a
very specific application. For this, we have analyzed typi-
cal eHealth environments (information access of physicians
in the course of a day, based on statistical information of
a medium-sized hospital) and have generalized these find-
ings for the specification of our benchmark. Based on these
numbers we estimated the amount of context data to be col-
lected in the course of one year (see Table 2 column 3). On a
mobile device, only context data of one user are stored so we
scaled the data of column 3 down to one person (see Table 2
column 2). In order to make the benchmark as flexible as
possible, we consider three settings with context data of i.) a
year, ii.) a quarter, and iii.) a week (in the latter two cases,
the numbers from Table 2 are scaled down accordingly).

3.1 Benchmark Queries
The benchmark queries we have defined reflect the way

mobile users and context-aware applications interact with
a context database. The query mix considers mainly read
accesses to context data, as well as insert operations which
create new context objects as the user’s context evolves.

Q1: Return a subject by a given ID. Such queries are often
used, for instance for the identification of a physician.

Q2: Return the last recorded context object of a given type
for a subject, e.g., the last blood pressure value.

∗Cardinality changes over time.



Entity data sets per
person & year

data sets medium-
size hospital/year

DataGenerator 851 15.500
Human 1 5.000
HardwareSensor 833 25.000
SoftwareSensor 17 500

Mode 851 5.000
ContextObject 185.000∗ 925.000.000∗

ContextMetaData 185.000∗ 925.000.000∗

LogicalCombination 185∗ 925.000∗

Subject 1.800 27.000 (patients)

Table 2: Cardinalities of Entities in Benchmark

Query Percentage

Query 1 10 %
Query 2 7 %
Query 3 7 %
Query 4 6 %
Query 5 3 %
Query 6 13 %

Query Percentage

Query 7 7 %
Query 8 6 %
Query 9 4 %
Query 10 36 %
Query 11 0.5 %
Query 12 0.5 %

Table 3: Benchmark Query Mix

Q3: Return the context object of a given type for a subject
in a given time interval (day, week, month).

Q4: Return the last recorded context object of a given type
for a subject, generated by a given generator. It con-
siders details on the sensor, e.g., to find out whether a
blood pressure meter has the desired precision.

Q5: Return the available data generators including type
and precision that generate context objects of a given
type for a subject (e.g., for the selection of a generator
for a particular application).

Q6: Return a subject of a given type with the same context
object as a given subject, for instance when searching
for patients belonging to a sick room or for devices
available in the sick room in which the physician is
currently situated.

Q7: Return all available types of context objects to a given
subject in alphabetical order.

Q8: Return all logical combinations of context data for a
given subject. The query result shows which context
data are part of other context data.

Q9: Return the number of data generators that generate
context data per subject. By this query one is able to
control the generators belonging to one subject.

Q10: Insert a context object. This operation reflects all con-
text change of a user, as sensed by the device.

Q11: Update all context objects belonging to one logical
combination.

Q12: Delete a context object, e.g., for correcting mistakes
of human data generators.

The order of the queries in the mix will be randomly cho-
sen, but their occurrence over a longer interval is determined
by the percentages given in Table 3. It should be noted that
all queries, except for no. 10 (creation of context object) run
sequentially, while the insertion is done automatically in the
background, in parallel to the dynamic adaptation.

3.2 Performance Metrics
For the benchmark evaluation, we consider the following

metrics, which are aligned with the Berlin benchmark [3].

Metrics for Single Queries
• Average Query Execution Time (aQETx): Average

time for executing an individual query of type x ten
times with different parameters against the system un-
der test (SUT).

• Minimum/maximum Query Execution Time (minQETx,
maxQETx): A lower and upper bound execution time
for queries of type x.

• Queries per Second (QpSx): Average amount of queries
of type x that were executed per second. This value is
computed from the aQETx values.

Metrics for Query Mixes
Overall Runtime (oaRT): Overall time it took the test driver
to execute a certain amount of queries following the distri-
bution in the mix against the SUT. Thereby, inserts are
running in a parallel thread on the device. We decided to
process thee runs each with 300 queries each.

4. BENCHMARK SETUP
In this section,we describe in detail the setup of our bench-

mark evaluation.

4.1 Data Stores
We have selected three different kinds of data stores for

the benchmark. All are well tested and stable open source
systems that are widely adopted in practice.

• Relational databases

i) H2 (v. 1.2.136) in embedded mode and remotely
ii) MySQL (v. 5.0.51a) running remotely
iii) SQLite (version 3.5.9) [19] in embedded mode

• RDF/OWL triple store Sesame (v. 2.3.1) [16] with
Storage and Inference Layer SwiftOWLIM (3.0 beta
12) [13] remotely (servlet, deployed into apache-tomcat-
6.0.24).

• Object-oriented database db4o (v. 7.12) [4] in embed-
ded mode and running remotely

Initially, we have chosen only SQLite, Sesame, and db4o
for the benchmark. However, Sesame/SwiftOWLIM cur-
rently does not run on smart phones and SQLite cannot be
used in a client/server (c/s) mode. Therefore, we added H2
to our benchmark as it supports both embedded and c/s
mode. This makes results for remote operation comparable
among the triple store and the relational databases. Finally,
we also evaluated MySQL in c/s mode.

The relational database SQLite demands zero configura-
tion, has a small system footprint and no external depen-
dencies to other libraries which makes it highly appropriate
for mobile devices. Furthermore, it is currently used in sev-
eral applications (e.g., Firefox, Google tools). H2 [10] is
an open source Java database also having a small system
footprint (about 1 MB) and low memory requirements. It
supports disk-based and in-memory databases in embedded
and server mode. MySQL [12] is a highly popular and very
widely adopted open source database, featuring a rich set of
functionality.



As the LoCa approach considers the semantics of services
when deciding on dynamic adaptations, we have also cho-
sen a triple store for the benchmark. Out of the available
open source RDF triple stores we have evaluated, Sesame
has been the most promising tool as it is already widely
used [16] and has proven to perform well enough for our pur-
pose [3]. Sesame allows for easy extension via the so-called
SAIL-API. As the back-end store implementations shipped
with Sesame do not provide the OWL based reasoning we
would like to use in our model, we used an alternative third
party implementation called SwiftOWLIM, an in-memory
triple store which implements rule-based forward-chaining
strategy for inferencing and supports a subset of OWL DL.

The object-oriented database db4o has been chosen to
avoid the impedance mismatch as the LoCa system is com-
pletely implemented in Java.

All tests were performed on Nexus One (N1) mobile phones
using Google Android version 2.1 [1] platform. The devices
come with 512MB RAM, 512MB ROM, and a Qualcomm
QSD8250 CPU with 1GHz. When working in remote mode,
instances of Db4o, MySQL, and Sesame/SwiftOWLIM ran
on a standard server (Intel Core 2 - 6600 2.4GHz, 4GB RAM,
250GB SATA Seagate ST3250820AS, Ubuntu 9.04 x86 64).
Mobile phones were connected to a 802.11b/g 54MBit wire-
less access point (DLINK DIR615), to which the server was
connected via 100MBit Ethernet.

4.2 Data Generator
To supply the different types of databases with equivalent

datasets, we implemented a parameterizable data generator
that incorporates output modules for every target paradigm.
In the first step, the raw data is generated in-memory us-
ing an integrated object-oriented data model according to
the context data model presented in Figure 1. The actual
data values are generated by exchangeable value generators,
all relations are picked at random (evenly distributed). In
the second step, this data is then transformed into the tar-
get data formats by special output modules. An interme-
diate raw format is stored to be able to create additional
outputs later, that are equivalent to the formerly gener-
ated ones. Additionally, every output module creates equal
sets of query parameter values that are used throughout the
benchmark run. This ensures a maximum of comparability
between the different platforms.

4.3 Implementation of the Data Model
The schemas for the different data stores are created ac-

cording to the LoCa context data model. For the relational
databases, a standard transformation has been applied. The
inheritance is implemented using a horizontal partitioning to
avoid joins and decrease execution time.

For the transformation to RDF, an OWL DL ontology
has been defined1. Entities are directly mapped to concepts
(classes), relations among entities are mapped to either one
or two object roles (properties) depending on whether both
directions can be navigated, and attributes to data roles.
Furthermore, we exploited additional modeling expressiv-
ity available in OWL: cardinality restriction constructors,
disjointness of concepts, and functional, transitive, and ir-
reflexive properties whenever appropriate.

For db4o, we transformed the context model to a Java
class structure by mapping entities to classes and by us-

1Available via http://on.cs.unibas.ch/owl/1.0/Context.owl

ing collections for the relationships. To work in an object
oriented manner, we applied the composite pattern to im-
plement the inheritance hierarchy.

4.4 Implementation of Benchmark Queries
All benchmark queries have been formulated in the query

languages supported by the respective data stores. For re-
lational databases we used SQL, for db4o SODA, and for
Sesame SPARQL.

In case of H2 and MySQL, we used suitable JDBC drivers
to access the databases. SQLite comes as built-in embed-
ded database with its own API that offers different ways
to access the database, raw query (nearly plain SQL), and
a structured interface for users with little SQL knowledge.
For the benchmark, we used the raw query interface.

SPARQL has evolved as the de facto standard for querying
RDF graph data. At the moment, there exist two major ver-
sions of SPARQL that are specified by the W3C. SPARQL
1.0 [17] has matured to a W3C recommendation and con-
tains basic graph query constructs. At the time of writ-
ing SPARQL 1.1 [18] is still a working draft. It adds more
advanced features like aggregations and data manipulation
to the language. As our chosen triple-store only supports
SPARQL 1.0, queries that change the dataset were difficult
to handle. While query 12 can be easily implemented using
a Sesame specific type of request (’transaction’), query 11
would have required to programmatically perform needed
updates on the datasets. Thus, we chose to drop this query
in the triple-store implementation of our benchmark. Also
aggregating queries had to be implemented partly on the
client side. To access the RESTful SPARQL interface that
SESAME provides, we used the HttpClient implementation
integrated into the Android SDK. All result data was en-
coded as JSON and parsed using androids own parser im-
plementation.

Db4o supports at its APIs query by example (QbE), Na-
tive Queries (NQ) and SODA. We decided to use SODA
because it is, according to the db4o documentation [5], up
to two times faster than optimized NQ and five times faster
than unoptimized NQ — the reason for this is that SODA is
the underlying internal query API all the other query APIs
are mapped to.

5. BENCHMARK RESULTS
This section summarizes the evaluation results for our

benchmark.

H2 H2 c/s MySQL c/sSQLiteOWLIM c/s db4o
10

0

10
1

10
2

10
3

10
4

10
5

qu
er

ym
ix

 e
xe

cu
tio

n 
tim

e 
(lo

g−
sc

al
e,

 in
 s

ec
)

 

 

Week
Quarter
Year

Figure 2: Overview of Query Mixes



System Week Quarter Year

H2 emb 26 (0.9) 1300 (23.8) 23251 (267.3)
H2 c/s 17 (0.9) 38 (23.8) 251 (267.3)
MySQL c/s 4 (0.8) 29 (18.8) 418 (186.0)
SQLite emb 386 (0.8) – (17.5) – (172.9)
SQLite emb (r) 384 (0.8) – (17.5) – (172.9)
OWLIM c/s 18 (1.6) 1025 (38.1) – (384.1)
db4o emb 511 (1.5) 21100 (22.3) – (126.5)
db4o c/s – (1.5) – (22.3) – (126.5)

Table 4: Execution Times of Query Mixes in Sec-
onds (in parentheses: Database Sizes in MB)

Query Mixes. Figure 2 and Table 4 show the results of
the query mix evaluation in the different settings. The ex-
ecution times of the relational databases vary considerably
but except for SQLite, all query mixes could be processed.
Only for H2 emb, we had to increase the JVM heap size to
80 MB which is however a rather unrealistic setting for the
device. SQLite was comparably slow. H2 c/s and MySQL
c/s manage to execute the query mix for one year in nearly
the same time as SQLite needs for the query mix for one
week (SQLite week: 386s, H2 year: 251s, MySQL year:
417s). This is most probably due to the lack of a sophis-
ticated query optimizer for SQLite. Furthermore, H2 c/s
proves to better perform on the largest data set (year), but
MySQL c/s performs much better on the smaller data sets
(week/quarter). As expected, the c/s architectures perform
better than the embedded databases on our resource lim-
ited mobile devices. For SQLite, we have compared a set-
ting with referential integrity with a setting without. The
benchmarks results show only marginal differences. OWLIM
c/s shows only an average performance, only slightly better
than H2 emb – however, it is not able to process a query
mix on the large data set (year). For db4o we could not
manage to process a complete query mix. With db4o c/s,
query 4 could not be executed although the query ran fine in
the db4o embedded version – this seems to be the result of
a mashaling/unmarshaling problem in db4o. The db4o emb
version is slow, and needs a lot of space and JVM heap.

Single Queries. To find out why the query mixes showed
significant performance variations on different systems, we
have also analyzed the average execution time of frequently
occurring queries. Query 6 has a fraction of 13% in the query
mix. For this query, the triple store performs much better
than most relational databases and even db4o c/s is for the
large dataset (year) in the range of MySQL (see Figure3).

Query 1 has also a major influence on the query mix
(10%). SQLite performed best for this query while db4o
emb performed comparably bad. db4o c/s performed better
but could not reach the times of the relational databases; its
performance is comparable to OWLIM (see Figure 4).

Query 9 is one of the most controversial queries in the
benchmark since some systems have not been able to prop-
erly execute it in reasonable time (see Figure 5). This query
runs fine on H2 c/s and MySQL but lasted extremely long
on SQLite. One reason for this is might be the less elabo-
rated optimizer of SQLite. H2 could perform this query but
we needed to increase the JVM heap to 64 MB. OWLIM
performs fair on small data sets but gets very slow with
increased data sets.

H2 H2 c/s MySQL SQLite(r) OWLIM db4o db4o c/s
10

−2

10
−1

10
0

10
1

10
2

qu
er

y 
ex

ec
ut

io
n 

tim
e 

(lo
g−

sc
al

e,
 in

 s
ec

)

 

 

Week
Quarter
Year

Figure 3: Single Query Evaluation for Query 6

H2 H2 c/s MySQL SQLite(r) OWLIM db4o db4o c/s
10

−3

10
−2

10
−1

10
0

10
1

10
2

qu
er

y 
ex

ec
ut

io
n 

tim
e 

(lo
g−

sc
al

e,
 in

 s
ec

)

 

 

Week
Quarter
Year

Figure 4: Single Query Evaluation for Query 1

Summary Results. The analysis of the performance for in-
dividual queries shows that the chosen systems have differ-
ent strengths. A system that is very slow for one query
can be fast for another query. For deciding what system
is the best we have to care about the overall performance
shown in the query mixes where the fraction of queries is
considered. In the mixes, read-only queries (without Query
10) are running in parallel to inserts (Query 10). The ex-
ecution of inserts usually lasts a few milliseconds (2 to 35
ms), except for OWLIM where the execution of inserts lasts
more than 10000 milliseconds. The performance in c/s mode
was mostly considerably better than in embedded mode. H2
needed for the query mix with the context data accumulated
in one year 23251s while H2 c/s needed 251s. For db4o we
could not run a complete query mix. But when comparing
the single queries it is obvious that db4o c/s is mostly faster

H2 H2 c/s MySQL SQLite(r) OWLIM db4o db4o c/s
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

qu
er

y 
ex

ec
ut

io
n 

tim
e 

(lo
g−

sc
al

e,
 in

 s
ec

)

 

 

Week
Quarter
Year

Figure 5: Single Query Evaluation for Query 9



than db4o embedded. Query 9 seems to be an outlier as it
performs better when executed in embedded mode than in
c/s mode (see Figure 5). Although additional communica-
tion cost incur in c/s mode, powerful server-side hardware
can partly or completely compensate this. Only for db4o,
communication costs are in some cases higher than the ben-
efit of more powerful servers. Finally, the benchmark shows
that it is not feasible to store context data for a longer period
in an embedded database on a mobile device.

Lessons Learned. SQLite is small and easy to use, but
its optimizer is not as developed as that of more mature
database systems. We had to manually optimize some of
the queries to improve the query performance.

H2 supports referential integrity by default and works well
in embedded and client/server setting. Most notable, H2
caused least configuration problems.

MySQL, as the data store with the richest set of features,
is also the most demanding system regarding configuration
for remote access.

OWLIM, Sesame’s built-in data store, can be easily cre-
ated and maintained using the web based workbench. How-
ever, manual configuration was needed to create repositories
working with an OWLIM store after the binaries were inte-
grated into the Servlet distribution. As we chose the REST-
ful HTTP interface to access the stores, some conveniences
of common database access layers had to be implemented on
top of the standard http client, e.g., to circumvent memory
restrictions when large result sets were received. This was
the case for Query 8, where a lacking aggregation feature of
SPARQL 1.0 had to be implemented on the client side.

db4o was comparatively slow, especially for Query 9 and
it demanded much memory and JVM heap space (up to
64M/80M). For speeding up the tests, we used the SODA
query language that is much faster than the recommended
query interface (NQ). Actually, the performance of db4o
also strongly depends on the design of the data model as
inheritance and collections with a lot of associated objects
slow down the query execution dramatically. We optimized
our model, but in order to reach an appropriate speed we
would have to completely redesign our model, especially by
abandoning the object-oriented design (inheritance). In c/s
mode, one query (no. 3), did not run at all, although we
did not experience any problems in embedded mode. Al-
though db4o performs well on a standard PC in c/s mode,
we were faced with major problems regarding performance
and stability in embedded mode on the mobile device. These
problems are well taken by the db4o developers as they are
currently aiming at decreasing the needed stack size to bet-
ter support Android-based platforms.

6. CONCLUSIONS AND FUTURE WORK
Managing context data on mobile devices is an essential

prerequisite for supporting dynamic, context-aware adapta-
tions of applications. In the paper, we have presented a
benchmark designed for the management of context data
and we have reported in detail on the benchmark evaluation
which considers relational and object-oriented databases and
a triple store in embedded and/or client/server mode. The
set-up considers different context data sets accumulated by
mobile users on their devices in a realistic setting in the
course of a week, a month, and a year. Relational data
stores in c/s mode performed best in the benchmark. For

smaller data sets, the performance of embedded relational
databases and the triple store (c/s) is sufficient.

In our future work, we will focus on the LoCa rule engine
to provide support for the automatic adaptation of appli-
cations (workflows) and user interfaces, based on the local
context store evaluated in our benchmark.

7. REFERENCES
[1] Android Open Source Project.

http://source.android.com/.

[2] M. Baldauf and S. Dustdar. A survey on
context-aware systems. Int. Journal of Ad Hoc and
Ubiquitous Computing, 2(4):263–277, June 2007.

[3] Berlin SPARQL Benchmark (BSBM), 2009.
http://www4.wiwiss.fu-
berlin.de/bizer/BerlinSPARQLBenchmark.

[4] db4o. http://www.db4o.com/.

[5] db4o Reference.
http://developer.db4o.com/Documentation/Reference/
db4o-7.12/java/reference/.

[6] A. K. Dey. Understanding and using context. Personal
and Ubiquitous Computing, 5(1):4–7, February 2001.

[7] N. Fröhlich, A. Meier, T. Möller, M. Savini,
H. Schuldt, and J. Vogt. LoCa – Towards a
Context-aware Infrastructure for eHealth
Applications. In Proc. of the 15th Int’l Conference on
Distributed Multimedia Systems (DMS’09), 2009.

[8] N. Fröhlich, T. Möller, S. Rose, and H. Schuldt. A
Benchmark for Context Data Management in Mobile
Applications. Technical Report CS-2010-002, Univ.
Basel, 2010. http://informatik.unibas.ch/research/
publications tec report.html.

[9] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark
for OWL Knowledge Base Systems. Web Semantics:
Science, Services and Agents on the World Wide Web,
3(2-3):158–182, October 2005.

[10] H2 Database Engine.
http://www.h2database.com/html/main.html.

[11] McObject Benchmarks Embedded Databases on
Android Smartphone.
http://www.mcobject.com/march9/2009.

[12] MySql. http://mysql.com/.

[13] OWLIM. http://www.ontotext.com/owlim/.

[14] Perst – An Open Source, Object-oriented Embedded
Database. http://www.mcobject.com/perst/.

[15] PolePosition – Open Source Database Benchmark.
http://polepos.sourceforge.net/.

[16] Sesame – Open Source Framework for Storage,
Inferencing and Querying of RDF Data.
http://www.openrdf.org/.

[17] SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[18] SPARQL 1.1 Query Language. http://www.w3.org/
TR/2010/WD-sparql11-query-20100601/.

[19] SQLite. http://www.sqlite.org/.

[20] T. Strang and C. Linnhoff-Popien. A context modeling
survey. In In: Workshop on Advanced Context
Modelling, Reasoning and Management, UbiComp
2004, Nottingham/England, 2004.

[21] TPC - Transaction Processing Performance Council.
http://www.tpc.org/.


